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Abstract. Port scans are continuously used by both worms and human
attackers to probe for vulnerabilities in Internet facing systems. In this
paper, we present a new method to efficiently detect TCP port scans in
very high-speed links. The main idea behind our approach is to early dis-
card those handshake packets that are not strictly needed to reliably de-
tect port scans. We show that with just a couple of Bloom filters to track
active servers and TCP handshakes we can easily discard about 85% of
all handshake packets with negligible loss in accuracy. This significantly
reduces both the memory requirements and CPU cost per packet. We
evaluated our algorithm using packet traces and live traffic from 1 and
10 GigE academic networks. Our results show that our method requires
less than 1 MB to accurately monitor a 10 Gb/s link, which perfectly
fits in the cache memory of nowadays’ general-purpose processors.

1 Introduction and Related Work

Every day both individuals and companies depend more on the reliability and
safety of Internet connections. However, even today, entire industry branches or
countries can be a target of an attack (e.g., Stuxnet [3]). Most attacks start with
a recognition phase, where an attacker looks for attack vectors in one or several
victim systems. Port scanning is arguably the most widely used technique by
both worms and human attackers to probe for vulnerabilities in Internet systems.

Given the large implications in network security, several previous works have
addressed the problem of how to efficiently and reliably detect port scans. Most
proposed solutions require tracking individual network connections (e.g., [6, 15,
14]). This approach however does not scale to very high-speed links, where the
number of concurrent flows can be extremely large. For example, a naive solution
based on a hash table would require large amounts of DRAM (e.g., to store flow
identifiers) and several memory accesses per packet (e.g., to handle collisions).
Nevertheless, access times of current DRAM technology cannot keep up with
worst-case packet interarrival times of very high-speed links (e.g., 32 ns in OC-
192 or 8 ns in OC-768 links).

Traffic sampling is considered as the standard solution to this problem. Un-
fortunately, recent studies [7, 5] have shown that the impact of sampling on
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portscan detection algorithms is extremely large. Another alternative is the use
of probabilistic, space-efficient data structures, such as Bloom filters [16, 11],
which significantly reduce the memory requirements of detection algorithms.
This way, the required data structures can fit in fast SRAM, which has access
times below 10 ns. Although we are not aware of any survey paper covering the
use of Bloom Filters for portscan detection, [11, 15] provide a good overview on
the work in this area.

In this paper, we present a practical method to detect TCP port scans in very
high-speed links that follows this second approach. A key assumption behind our
method is that, apart from data traffic, we can even discard most TCP handshake
packets and still be able to successfully detect port scans.

First, we ignore legitimate handshakes using a whitelist of active server IP-
port pairs. Second, we discard those failed connections that do not correspond
to scans, such as TCP retransmissions, packets from other network attacks (e.g.,
SYN floods) or configuration errors (e.g., P2P nodes down or misconfigured
domain servers). In order to discard handshake packets, we use two Bloom fil-
ters. Surprisingly, we show that this simple solution can drop about 85% of all
handshake packets with negligible loss in accuracy. This significantly reduces the
number of memory accesses, CPU and memory requirements of our algorithm.

After filtering most part of the traffic, we still need to track the number of
failed connections for the remaining sources. Although there is a potentially very
large number of active sources, most of them will fail very few handshakes, while
scanners will fail many. Thus, the detection problem can be seen as the well-
known problem of finding the top-k elements from a data stream [8]. In order
to efficiently detect port scans, we use an efficient top-k data structure based on
the Stream-Summary proposed in [9], which has a constant memory usage.

We evaluated our algorithm in 1 and 10 GigE academic networks [1]. Our
results show that our method requires less than 1 MB to accurately monitor a
10 Gb/s link. Therefore, it can be implemented in fast SRAM and integrated in
router line cards, or reside in cache memory of general-purpose processors.

The rest of this paper is organized as follows. Sec. 2 describes our portscan
detection algorithm in detail. Sec. 3 evaluates the performance of the algorithm
with both packet traces and live network traffic. Finally, Sec. 4 concludes the
paper and outlines our future work.

2 Detection Algorithm

Port scans are characterized by a simple feature: they attempt to connect to
many targets but only get few responses. This imbalance in the number of at-
tempts and successes is the basis of several portscan detection algorithms. A
portscan detection algorithm can then be divided into two different problems:
(1) detecting failed connections, and (2) tracking the sources responsible for
them. Both (1) and (2) are challenging in high-speed networks, since they re-
quire a significant amount of memory and computing power to process packets



Fig. 1: Algorithm description.

at line speed. As already discussed in Sec. 1, a naive solution based on a hash
table is impractical in this case, although it can be used in small networks.

In this section, we present a practical solution that copes with these two
problems by reducing both the volume of processed traffic and the memory re-
quirements of the detection algorithm. In Sec. 2.1, we describe a simple method
to discard unnecessary traffic using Bloom filters, which significantly simpli-
fies problem (1), while Sec. 2.2 concentrates on identifying scanners using a
lightweight counting structure that addresses problem (2).

For the sake of clarity, throughout this section, we will refer to the client host
that initiates the handshake as A, with IP address Aip, and to the server that
receives the connection as B, with address Bip and port Bport.

2.1 Detecting Failed Connections

We can define a failed connection as one for which a client does not get a SynAck

response from the server after having sent the corresponding Syn packet. There-
fore, to detect failed connections, we can ignore data traffic and focus only on
Syn/SynAck packets. According to our traces (described later in Sec. 3), these
control packets represent only 1.5% of all TCP traffic.

In addition, we can ignore legitimate handshakes to detect port scans, given
that a scanner will always fail a large number of connections compared to a nor-
mal host. In order to efficiently discard connections directed towards a working
service, we can use a Bloom filter that maintains a whitelist of active server IP-
port pairs (bf whitelist). In particular, for every new SynAck response, we add
the tuple [Bip, Bport] into this Bloom filter.

Since we are especially interested in those clients that connect to many unique
destination addresses and ports, we can also discard those repeated connection
attempts to the same destination. Besides standard TCP retransmissions, many
applications try to reconnect several times (even hundreds) to the same desti-
nation after a failed connection (e.g., P2P nodes, misconfigured proxies, mail
servers or VPN applications). Surprisingly, repeated Syn packets are extremely
common according to our traces (see Sec. 3). In order to efficiently drop dupli-
cated Syn packets to the same destination IP-port pair, we use a second Bloom



filter (bf syn). For every Syn packet observed, we store the tuple [Aip, Bip, Bport]
in the Bloom filter. As we will see later, using this second filter has the additional
advantage of protecting the bf whitelist from being saturated by many SynAck

packets sent by a malicious user (i.e., SynAck packets are ignored if they are not
an answer from a previous Syn).

Although Bloom filters can have false positives, they have a negligible impact
on our method as we show in Sec. 3. In addition, in case that one or both filters
get saturated (e.g., if they are not properly dimensioned), the algorithm will
produce False Negatives instead of False Positives, which is an important feature
for systems automatically blocking port scanners [16].

Fig. 1 presents our algorithm in detail. After a packet arrival, we check if it is
a Syn or a SynAck packet. Otherwise, the packet is dropped. In case it is a Syn

packet, we check if the [Bip, Bport] tuple corresponds to a known destination in
the bf whitelist. In this case, the packet is directly dropped. If not, we check if
it is a repeated connection attempt in the bf syn filter. In this case, the packet
is also dropped. Otherwise, the [Aip, Bip, Bport] tuple is stored in the bf syn

filter and the Aip source is incremented in the counting structure (described
later in Sec. 2.2). For a SynAck packet, we first check if it is a response from
a previous Syn packet in the bf syn filter. Otherwise, the packet is dropped.
Next, we check if the [Bip, Bport] tuple is already in the bf whitelist. If not,
the destination [Bip, Bport] is stored in the whitelist and the [Aip] source is
decremented. Therefore, we use the bf whitelist for two different purposes: (i)
to keep track of active destinations, and (ii) to check if a source needs to be
decremented after the connection has been established.1

2.2 Identifying Scanners

The algorithm described in Sec. 2.1 produces a series of increments and decre-
ments for new connections and completed handshakes respectively. From this
sequence, we want to identify the most active producers of failed connections,
which will very likely correspond to port scanners. This can be seen as the well-
known problem of identifying the top-k most frequent elements in a data stream.

For this purpose, we need a data structure that has limited memory usage
and supports both incrementing and decrementing. Fortunately, the recent lit-
erature provides us with several efficient top-k algorithms [8]. From those, we
selected the Stream-Summary data structure [9], since it uses a constant (and
small) amount of memory. However, our algorithm is not bound to a particular
top-k data structure. Although the original Stream-Summary does not support
decrementing, we made a straightforward extension to support a limited number
of decrements. We called this extension Span-Dec. As we will see in Sec. 3, in the

1 Note that using bf whitelist to check which decrements are needed can introduce
errors of 1 unit in the counting structure if several Syn packets from different sources
are sent to an active destination before it enters the whitelist. Although this unusual
situation cannot be exploited by an attacker, it could be easily solved by adding a
filter similar to bf syn for SynAck packets.



particular context of portscan detection, the data structure behaves almost like
an ideal hash table, but using much less memory. Although the particular im-
plementation details of the top-k data structure are not essential to understand
our algorithm, for the sake of completeness, we include below a short description
of both mentioned structures.

Stream-Summary. This structure is part of the Space-Saving algorithm [9]
that finds the most frequent elements in a data stream. It is able to observe up
to elemmax distinct elements at once. Every element ei has an assigned counter
cnti. All counters with the same value are linked into the same bucket. The
buckets are linked together and they can be dynamically created and destroyed.
When an element ei is incremented, it is detached from its bucket and attached
to a neighbor bucket with the new value. When the maximum number of ob-
served elements (elemmax) is reached, a new incoming element evicts the element
with the smallest counter. Each element has a maximum overestimation εi that
depends on the value of the evicted element. The element frequency is estimated
as freq(ei) = cnti − εi. The algorithm is lightweight and it requires only 1

ǫ

counters for a specified error rate ǫ. See [9] for a more detailed description.

Span-Dec. The original Stream-Summary does not support decrementing. How-
ever, we need to discount those established connections for which the correspond-
ing Syn has passed both Bloom filters. Therefore, we made a simple modification
to the original Stream-Summary to support a limited number of decrements. In
particular, instead of having a single counter per element, we use two counters:
cntL(ei) and cntH(ei). We also specify a maximum allowed difference between
both counters spanmax, which controls the tradeoff between the number of al-
lowed decrements and the error εi of the estimate. When an element is incre-
mented, cntH(ei) is moved as in the original Stream-Summary. In case that the
difference between both counters is greater than spanmax, the cntL(ei) is also
incremented. In order to decrement an element ei, the cntH(ei) is decremented,
but never below the value of cntL(ei). This solution can be understood as an
“undo” operation, where spanmax is the “undo” depth. The frequency of an
element ei is estimated as freq(ei) = cntH(ei) − εi. The technical report [10]
provides a detailed description of this extension.

As shown in Fig. 1, our detection algorithm uses Span-Dec to maintain the
count of failed connections per source [Aip]. This solution is useful to detect
both horizontal and vertical port scans. However, if we are interested only in a
particular type of scan, we can use instead [Aip, Bport] to detect horizontal port
scans and [Aip, Bip] to detect vertical ones.

3 Results

In the evaluation we used four traces. trace A was captured from the 1GigE
access link of UPC, which connects about 50,000 users. trace A0 is a modified
version of trace A that we describe later. trace B was taken from the MAWI



Table 1: Statistics of the traces. trace C only accounts for Syn/SynAck packets.
trace A trace B trace C trace A0

30min @ 1GigE 2h @ OC-3 30min @ 10GigE 30min @ 1GigE

date 2010-05-18 2010-04-16 2010-07-29 2010-05-18

TCP packets 228,848,927 144,885,865 13,978,845 97,380,742

TCP sources 188,136 263,055 467,264 89,086

TCP flows 2,892,334 5,199,928 11,526,323 1,133,392

average usage 879.1 Mb/s 185 Mb/s 3.5 Gb/s n/a

Working Group Traffic Archive [2]. trace C was captured from the 10GigE link
that connects the Catalan Research and Education Network to the Internet.
This link connects more than seventy universities and research centers. Due to
the link speed, for trace C we only collected Syn/SynAck packets. Statistics of
the traces are presented in Tab. 1. We published all the packet traces used in
this work, with anonymized IP addresses, at [1].

For the evaluation, we needed a ground truth trace to check if a detected
scanner was a real scanner or a (misclassified) legitimate source. For this pur-
pose, we modified trace A by removing all real scanners. We scanned the trace
using Bro [12] with both its standard algorithm and the TRW algorithm. Al-
though Bro is an online tool that does not guarantee an accurate ground truth,
we used a low alarm threshold (25) and removed all the flows from the reported
IP addresses to make sure that no scanning traffic is left, even if some legit-
imate traffic was also removed. Later, following the methodology proposed in
[11], we injected artificial scans to build a ground truth: 1000 scanners with
success ratio 0.2 and 1000 benign sources with success ratio 0.8. The interval
between Syn-SynAck packets was taken uniformly from the range (0, 450ms),
while the backoff time between Syns was modeled using an exponential distribu-
tion [11]. All modifications resulted in trace A0 that serves as the ground truth
for Sec. 3.1. Traces B and C were not modified.

3.1 Evaluation

This section covers the evaluation of our algorithm. First, we present an exam-
ple of how it is dimensioned. Next, we check the performance and validate its
accuracy with packet traces. Finally, we deploy it in an operational 10 GigE link.

Dimensioning. We followed a conservative approach to handle an unexpected
growth of traffic or peaks. For bf whitelist, we checked the mean number of
distinct [Bip, Bport] tuples in the trace, multiplied this value by 3 and we assumed
a maximum collision probability of pcoll = 0.01. We used an arbitrary length
of the measurement window of 2 minutes. Although in this paper we do not
evaluate this parameter, its value is important. As the filters are reset at the end
of every period, the window size represents a tradeoff between the memory usage
of the algorithm and its ability to detect slow scanners. With those values, we
calculated the optimal size of the Bloom filter. We repeated the procedure for



Table 2: Configuration parameters for the evaluated traces.
trace A trace B trace C trace A0

bf syn size 256KB 256KB 1MB 64KB

bf whitelist size 128KB 128KB 512KB 32KB

spanmax 6 4 10 5

bf syn using the unique number of [Aip, Bip, Bport] tuples. The value of spanmax

depends on the number of Syn packets concurrently sent by a source to distinct
active destinations, which are not yet in the whitelist. We set this value according
to 95th percentile of the traffic. For topk we arbitrarily set elemmax to 10000
elements, unless otherwise noted. Resulting parameters are presented in Tab. 2.
More details about the dimensioning procedure can be found in [10].

Detection threshold. To present the results for traces A, B and C, we follow the
methodology used in [13]. Fig. 2 depicts the results when running the algorithm
on our traces with the parameters described in Tab. 2. We plot the total number
of sources reported as scanners as a function of the detection threshold. The
threshold is the number of failed connections over which we classify a source
as a scanner. The embedded plots show the whole range of data in a log-log
scale, while the main plot presents only the part where the number of reported
sources grows rapidly, in a linear scale. The “hash table” line presents the results
obtained using hash tables to count distinct Syn and SynAck packets. In this
scenario, all packets are counted with perfect accuracy. Results placed above this
line indicate the presence of False Positives (FP), while those placed below the
line imply False Negatives (FN). “Span-dec” line plots the results obtained when
our counting structure was used. Both lines almost overlap indicating that our
algorithm is close to an ideal tracking scheme using a hash table, but without
its memory constraints. In particular, for high threshold values our algorithm
features almost perfect performance. “Original top-k” shows the results obtained
with the original Stream-Summary structure [9]. The large number of FP shows
the necessity of supporting decrements in the counting structure.

Accuracy. The results in Fig. 2 were not enough to validate the actual accuracy
of our algorithm. For this purpose, we used the ground truth trace A0, for
which we knew the actual scanners and legitimate hosts. Our results show that,
for thresholds higher than 20, the algorithm obtained perfect accuracy (i.e., 0
FP, 0 FN, and 100% detected scanners). More details about the accuracy of our
algorithm and the impact of each configuration parameter are given in [10].

Filter performance. Tab. 3 presents the performance of the filters. The Space
usage row shows the maximum space usage of each Bloom filter and (in brackets)
the empirical collision probability. The probabilities are very small, even negli-
gible. The evictions row shows the rate of traffic dropped by each filter (relative
to the input packets of that filter). Total packets evicted gives the total ratio
of handshake packets discarded by any of the two filters. Both filters together
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(a) trace A - 1 Gb/s UPC link
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(b) trace B - MAWI traffic
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(c) trace C - 10 Gb/s CESCA link
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(d) online - 10GigE link

Fig. 2: Evaluation results on the traces - number of sources reported as scanners
vs. detection threshold. Main graphs show a part of the data in a linear scale,
embedded graphs show the whole range of data in a logarithmic scale.

drop about 85% of all handshake packets. Thus, only 15% of all Syn/SynAck
packets result in increments or decrements in the counting structure. Given that
the counting error depends directly on the number of introduced elements, with
a smaller number of entries we achieve better accuracy with less space.

Memory size. Finally, we evaluated the impact of the memory size on the ac-
curacy of the detection algorithm using trace C. First, we examined the impact
of the size of the Bloom filters using 10000 entries in the topk structure. Results
are presented in Fig. 3a. Filters below 96KB present FN due to collisions, as dis-
cussed in Sec. 2.1. With filters of 192KB (128KB+64KB) and a threshold above
100, the algorithm performs very close to the optimal. Using these filters, we
examined the influence of the maximum number of elements (elemmax) in the
topk. The results are presented in Fig. 3b. We can see that, for thresholds above



Table 3: Usage of the filters during the evaluation (evictions: Syn / SynAck)
trace A trace B trace C

space usage: bf whitelist 6.78% (6.59e-09) 1.90% (8.94e-13) 4.66% (4.77e-10)

space usage: bf syn 13.27% (7.25e-07) 29.07% (1.75e-4) 11.02% (1.97e-07)

evictions: bf whitelist 52.7% / 67.1% 24.7% / 76.2% 54.3% / 77.9%

evictions: bf syn 61.2% / 65.0% 54.3% / 72.0% 55.4% / 64.2%

total packets evicted 84.3% 73.5% 84.4%

0 50 100 150

0
50

0
10

00
15

00
20

00

threshold

nu
m

be
r 

of
 s

ou
rc

es
 r

ep
or

te
d 

as
 s

ca
nn

er
s hash

1MB+512kB
128kB+64kB
64kB+32kB
32kB+16kB

1 10 100 1000

1
10

0
10

00
0

(a) filters (bf syn+bf whitelist)

0 50 100 150

0
50

0
10

00
15

00
20

00

threshold

nu
m

be
r 

of
 s

ou
rc

es
 r

ep
or

te
d 

as
 s

ca
nn

er
s hash

10000
5000
2500
1250

1 10 100 1000

1
10

0
10

00
0

(b) max. number of elements in topk

Fig. 3: Impact of the memory size compared to an ideal scheme (trace C).

100, even with 2500 elements in the topk we still obtain very good accuracy. In
our implementation, this configuration occupies only 417KB for a 10 GigE link.

Online deployment. In order to evaluate the real-time performance of the
algorithm, we implemented it in the CoMo system [4] and deployed it on the
10GigE link from where trace C was collected. The hardware platform consisted
of a PC with an Intel Xeon at 2.40GHz with two DAG 5.2SXA cards. A filter
to discard non-Syn/SynAck packets was set in both cards. The filtering also
can be done easily in software, since it requires only checking Syn and Ack

flags in a TCP header. We ran the program for 100 min. (13-12-2010 at 10:50).
The average traffic in the link was 5.4 Gb/s. The CPU load was about 5%
during the whole experiment. For both filters, the maximum usage was 18.5%
with a maximum collision probability of 7.31e-06. The threshold-alarm graph is
presented in Fig. 2d.

4 Conclusions and Future Work

In this paper, we presented a practical approach to detect port scans in very high-
speed links. The key idea behind our approach was to discard as much traffic as
possible at early processing stages in order to reduce both the CPU and memory



requirements of our algorithm. We used two simple Bloom filters that maintain
a whitelist of active destinations and efficiently track TCP handshakes, and
combined them with an efficient top-k data structure to track failed connections.
Both Bloom filters together can early discard about 85% of all handshake packets
in our traces.

Our evaluation with four traces from different scenarios showed that our
algorithm can achieve almost perfect accuracy with very little memory. We also
deployed our algorithm in an operational 10GigE link and showed that it can
work online. Also, we made a new dataset available to the research community,
so that our results can be validated and compared with other solutions.

Although in the paper we focused only on TCP port scans, we are currently
investigating how to extend the algorithm to detect UDP scans. A possible so-
lution is to define which address blocks are behind the network to be protected.
Another limitation of the algorithm is that it focuses on detecting top sources of
port scans, and therefore it is not designed to reliably detect slow scans or more
sophisticated attacks, like distributed scans.
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