

Centre de Comunicacions Avançades
de Banda Ampla (CCABA)

Universitat Politècnica
de Catalunya (UPC)

Load Shedding for Network Monitoring
Systems

(SHENESYS)

 UPC team: Pere Barlet-Ros
Josep Solé-Pareta

Josep Sanjuàs
Diego Amores

Intel sponsor: Gianluca Iannaccone

Barcelona, February 3rd 2006

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

The scenario
● New network monitoring systems call for novel

methods for
– Expressing arbitrary queries
– Scheduling multiple competing queries

● SHENESYS addresses the latter aspect
– Schedule arbitrary queries in a resource constrained

environment
– Guarantee some level of quality of service

● Traditional resource management techniques are not
viable
– Push-based systems

● Input data rates decided by external sources that cannot be
controlled

– Continuous input stream with extremely high data rates
● Real-time constraints not only on responses but also in the input

– Arbitrary computation
● Incoming traffic unknown and unpredictable
● Unknown and arbitrary queries

Challenges

● Traffic is unpredictable and bursty in nature
– Bursts can be several orders of magnitude higher than

typical traffic
– Provisioning to line speed might imply waste of resources
– Bursts often produce different data than ordinary traffic

● Queries are unknown a-priori, arbitrary and complex
– Resource over-provisioning is not a solution
– Relational languages are usually not flexible enough to

express even the simplest network queries

● Runtime profiling of resource usage is needed
– Given a query resource consumption cannot be known

before actually running it, even when knowing the input
traffic

– Need to understand correlation between traffic features and
resource consumption of queries to be able to estimate
resource consumption

Challenges

● Provide QoS to arbitrary queries in a resource
constrained environment
– Network queries usually have QoS requirements in terms of

response delay and accuracy
– Not meeting QoS requirements can lead to useless results

● Robustness in front of network anomalies and attacks
– Anomalies usually produce more resource consumption than

usual
– Monitoring systems are especially needed when network is

at risk
– Malicious users may try also to attack directly the

monitoring system to cover up their actions

Objectives

● Predict resource usage of arbitrary queries
– Profile CPU, memory and I/O usage of arbitrary queries
– Find traffic features from packet stream that exhibit

correlation with resource usage of queries

● Implement mechanisms to shed excess of load
– Postpone or deny queries
– Reduce accuracy of queries (e.g. via packet sampling)
– Reuse or share computations among different queries

● Design and evaluate scheduling algorithms
– Apply load shedding mechanisms to meet QoS requirements

of most queries while maximizing the utility of the system
● Utility can be a function of delay, accuracy and priority

– Fast to early detect shortage of resources and avoid packet
loss

Objectives

● Build a complex resource management system
– Build a prototype in CoMo as a case study
– Test robustness of resource management techniques in front

of network anomalies and attacks

● Contribute to the main development of CoMo
– Build complex modules with different resource consumption

patterns than existing CoMo modules
● Identification of network applications
● Anomaly and intrusion detection
● Network forensic applications

– Others

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

Work done

● Capture operates on time bins
– Ease the process of checking if there are enough resources

to process a batch before the arrival of the next batch
– Circular buffers were needed
– Rewriting of libpcap and ERF sniffers

● On-line computing an logging of batch features
– #pkts, #bytes, #unique_hashes_batch,

#unique_hashes_table, #flushes_batch_will_cause, etc.
– Probably more features will be needed for more complex

modules

● On-line profiling and logging of CPU usage per module
– TSC, system/userland cycles, L1, L2 and L3 (Xeon) cache

misses, context switches, etc.
● Callbacks (depend on the module)
● Overhead (does not depend directly on the module)

– Allocating memory, creating/flushing tables, etc.

Work done

● Analysis of correlation between features of batches
and CPU usage for standard modules
– Tuple: #pkts, #unique_hashes_table
– The rest: #pkts
– #bytes is expected to matter for modules processing

payloads (when collecting full packets)

● Analysis of techniques to predict CPU usage and study
of prediction error
– Prediction methods: Linear prediction, multiple linear

prediction, etc.
● All history, last 1 sec, 10 sec, 1 min, etc.

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

Callback cycles

Callback cycles

Callback cycles

Callback cycles

Callback cycles

Linear regression prediction (10 sec)

Linear regression prediction (10 sec)

Linear regression prediction (10 sec)

Multiple linear regression prediction
(10 sec)

Multiple linear regression prediction
(10 sec)

Multiple linear regression prediction
(10 sec)

System vs. userland cycles

Measurement overhead/error

Reality

Can we predict that?

Linear regression prediction (10 sec)

Linear regression prediction (10 sec)

Linear regression prediction (10 sec)

Multiple linear regression prediction
(10 sec)

Multiple linear regression prediction
(10 sec)

Multiple linear regression prediction
(10 sec)

Trace: Linear regression prediction
(10 sec)

Trace: Linear regression prediction
(10 sec)

Trace: Linear regression prediction
(10 sec)

Effects of context switches

Removing samples with context
switches

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

Work plan (deadline: August 2006)

● Implement on-line prediction in CoMo
– Based on multiple linear regression
– Implement a method for feature selection

● Study and improve robustness of on-line prediction
mechanism in presence network anomalies and
attacks

● Detect when there are no enough CPU cycles available
to process a batch before the next batch arrival
– To simplify, we might assume that capture is running alone

● Linear optimization to schedule modules in capture
– Utility of module is given as input
– Simple load shedding: Stop serving batches to certain

modules

Work plan (deadline: August 2006)

● Analysis of more complex modules
– e.g. SNORT, Autograph, etc.

● Do the same for memory

● First analysis of export and other load shedding
mechanisms

● Improve the profiling/logging mechanism
– Queriable through CoMoLive!

● Submit a paper to a conference and write a research
report for project renewal

Short term work plan (deadline:
∼March 2006)

● Implement on-line multiple linear regression in CoMo

● Implement a fast feature selection algorithm in CoMo
– Remove irrelevant and/or relevant attributes
– e.g. adaptation of Fast Correlation Based Filter (FCBF)

● Modify capture to generate artificial anomalies and
attacks
– Network scans, DoS, elephant flows, etc.

● Improve resource measurement functionalities
– Independent measurements per logical and physical CPU's

● Check for processor switches during measures

– Support for deactivating cache

● Minor tasks
– Repair SNORT module, etc.

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

Other tasks

● Other tasks more related with the main development
of CoMo

● Master Thesis' students
– Derek Hossack working on Autograph
– Possible topics for new Master Thesis' students

● Anomaly detection improving the anomaly-ewma module
● Identification of network applications based on heuristic

techniques (port of the method already implemented in
SMARTxAC)

● Suggestions?

● Support and maintenance of CoMo nodes
– CESCA
– Possibly internal testing nodes at UPCnet

Equipment

● Equipment available at CCABA that can be used for
Shenesys (and CoMo Master Thesis' students):

– Intel Xeon 3.0 GHz dual processor (giro.ccaba.upc.edu)
– Intel Pentium IV 3.0 GHz (parellada.ccaba.upc.edu)
– 2 x Endace 4.3 GE cards
– 2 x SysKonnect SK98
– Trimble Acutime 2000 GPS receiver
– TDS module
– Optical splitters

● como-upc CVS: tempranillo.ccaba.upc.edu

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

Profiling CoMo modules

● Goal: profiling CoMo modules' callbacks
– Cycles: user space, system space, total
– Cache (L1, L2, L3): hits and misses

● Using Performance Monitoring Counters (PMCs) of the
Pentium IV
– Subset of its Model Specific Registers (MSRs) (not available

on Pentium III, etc)
● Relevant documentation:

– IA-32 Intel Architecture Software Developer's Manual
– IA-32 Intel Architecture Optimization Reference Manual

Performance Monitoring Events

● Counting cycles:
– TSC: timestamp counter

● Increments on each CPU cycle
● 64 bit (vs all other counters: 40 bit). Overflow each >10 years.
● Architectural register, not model-specific

– Non-halted clockticks
● Increments on each non-halted CPU cycle (does not increment

during I/O, etc)
● Hyperthreading: can count per-logical-processor
● Can count only system cycles, user cycles, or both

Performance Monitoring Events

● Cache misses:
– L1:

● no way to count misses provided by the Pentium IV
● count instructions replayed due to L1 miss

– L2, L3: can count cache misses (Only Xeon Processors have
L3)

Access to PMCs

● Write operations:
– Needed to choose what metrics are of interest (done once

per CoMo execution)
– Linux offers an interface to PMCs, so we use it: the

/dev/cpu/*/msr virtual device
● Read operations on PMCs:

– Read msr virtual device VS execute the rdpmc instruction
– Read access using msr virtual device too slow, but rdpmc

forbidden by linux
– We are reading PMCs intensively
– Wrote a linux kernel module that enables userland

execution of the rdpmc (read PMC) instruction (which is not
permitted by default)

● Reading the TSC:
– rdtsc instruction, allowed from user space by default

Configuration of PMCs

● Configuration of PMCs:
– tsc: nothing to do
– others:

● 1) determine event to monitor (cache misses, instructions
replayed, or cycles)

● 2) choose an appropriate event selection control register (ESCR)
● 3) configure the ESCR to select the event to monitor
● 3) choose an appropriate performance counter
● 4) configure its configuration control register (CCCR) to enable

counting

Preventing instruction reordering

● The Pentium IV can reorder instruction execution
– Speculative execution of instructions (branch prediction)
– Memory reordering

● Serializing instructions force the processor to
complete all modifications to flags, registers, etc
before execution of next instruction.
– no instruction after a serializing operation can be executed

before
– no instruction before the serializing op can be executed after

● Serializing operations can impact on CPU performance
– results of speculatively executed instructions are discarded

● The cpuid serializing instruction can be used to
increase the accuracy of the PMCs:
– we will not measure instructions that do not belong to

callbacks
– cpuid; read pmcs; cpuid; call_module_callback; cpuid; read

pmcs; cpuid
– we still need to check impact on performance

Agenda

● The scenario, challenges and objectives of SHENESYS
● Work done and current status
● Preliminary results
● Work plan
● Short term work plan
● Other tasks
● Equipment
● Appendixes

– Josep Sanjuàs: Intel performance counters
– Diego Amores: Summary of his internship at Intel Research

Packet filtering in CoMo

● Initial situation
– Packet filters compiled at runtime and loaded as a shared

library.
(undesirable because not portable to some architectures,
e.g. ARM).

– When querying, users have to write packet filters exactly in
the same way they are configured in the system.

● New implementation of the filter parser
– Using a CFG and Flex/Bison.
– Filters are seen as “expression trees”.
– No longer needed to compile filters at runtime (> portability)
– Users only have to write semantically equivalent filters when

querying (more flexibility).
– Looked into more advanced packet filtering methods (PTree,

Tuple Space Search), but discarded them for now.
– Future: probably use a method similar to BPF filtering.

Interarrival module

● Outputs the packet timestamps for each 5-tuple
(protocol, source ip, source port, dest ip, dest port).

● Used in experiments at IRC about inferring access
network load and distinguishing between wired and
wireless traffic, by Valeria Baiamonte (Politecnico di
Torino).

CoMo “Inline”

● Command-line operation support for CoMo
(as in other tools like tcpdump).

● The user can specify a module, filter, format and time
interval as command-line options and directly get the
output, without the need of HTTP queries.

Porting CoMo to ARM

● Objective: make CoMo work in machines with an ARM
architecture (like the Crossbow Stargate for wireless
monitoring).

● Main issue: data structures and memory accesses
must be
4-byte aligned.

● Future work: Tamper resistant wireless network
monitoring, by K.P.McGrath (University of Limerick).

“Source” modules

● Added “source” option to queries.

● When serving a query, it is now possible to use the
data stored by another module as input, through the
replay() callback of that module.

● Makes it possible to launch queries with a time interval
in the past for modules that do not store enough data
themselves (e.g. topdest or topports).

