Load Shedding for Network Monitoring
Systems
(SHENESYS)

CLg
3;3 O UPC team: Pere Barlet-Ros
Josep Solé-Pareta
Centre de Comunicacions Avancades Josep Sa nj UéS

de Banda Ampla (CCABA) \
Diego Amores
Universitat Politécnica

de Catalunya (UPC) Intel sponsor: Gianluca lannaccone

Barcelona, February 3™ 2006

 The scenario, challenges and objectives of SHENESYS
 Work done and current status

* Preliminary results

- Work plan

* Short term work plan

« Other tasks

« Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

The scenario

methods for
- EXpressing arbitrary queries
- Scheduling multiple competing queries

SHENESYS addresses the latter aspect

- Schedule arbitrary queries in a resource constrained
environment

- Guarantee some level of quality of service

Traditional resource management techniques are not
viable

- Push-based systems

* Input data rates decided by external sources that cannot be
controlled

- Continuous input stream with extremely high data rates
« Real-time constraints not only on responses but also in the input

- Arbitrary computation
* Incoming traffic unknown and unpredictable

Challenges

« Traffic is unpredictable and bursty in nature

- Bursts can be several orders of magnitude higher than
typical traffic

- Provisioning to line speed might imply waste of resources
- Bursts often produce different data than ordinary traffic

* Queries are unknown a-priori, arbitrary and complex
- Resource over-provisioning is not a solution

- Relational languages are usually not flexible enough to
express even the simplest network queries

- Runtime profiling of resource usage is needed

- Given a query resource consumption cannot be known
before actually running it, even when knowing the input
traffic

- Need to understand correlation between traffic features and
resource consumption of queries to be able to estimate
resource consumption

Challenges

 Provide QoS to arbitrary queries In a resource
constrained environment

- Network queries usually have QoS requirements in terms of
response delay and accuracy

- Not meeting QoS requirements can lead to useless results

« Robustness in front of network anomalies and attacks

- Anomalies usually produce more resource consumption than
usual

- Monitoring systems are especially needed when network is
at risk

- Malicious wusers may try also to attack directly the
monitoring system to cover up their actions

Objectives

- Predict resource usage of arbitrary queries

- Profile CPU, memory and I/O usage of arbitrary queries

- Find traffic features from packet stream that exhibit
correlation with resource usage of queries

« Implement mechanisms to shed excess of load
- Postpone or deny queries

- Reduce accuracy of queries (e.g. via packet sampling)
- Reuse or share computations among different queries

- Design and evaluate scheduling algorithms

- Apply load shedding mechanisms to meet QoS requirements
of most queries while maximizing the utility of the system
« Utility can be a function of delay, accuracy and priority

- Fast to early detect shortage of resources and avoid packet
loss

Objectives

- Build a complex resource management system
- Build a prototype in CoMo as a case study

- Test robustness of resource management techniques in front
of network anomalies and attacks

- Contribute to the main development of CoMo

- Build complex modules with different resource consumption
patterns than existing CoMo modules

 |dentification of network applications
« Anomaly and intrusion detection
» Network forensic applications

- Others

 The scenario, challenges and objectives of SHENESYS
« Work done and current status

* Preliminary results

- Work plan

* Short term work plan

« Other tasks

« Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

Work done

« Capture operates on time bins

- Ease the process of checking if there are enough resources
to process a batch before the arrival of the next batch

- Circular buffers were needed
- Rewriting of libpcap and ERF sniffers

* On-line computing an logging of batch features

- #pkts, #bytes, #unique _hashes_batch,
#unique_hashes _table, #flushes batch_will cause, etc.

- Probably more features will be needed for more complex
modules

- On-line profiling and logging of CPU usage per module

- TSC, system/userland cycles, L1, L2 and L3 (Xeon) cache
misses, context switches, etc.

» Callbacks (depend on the module)
* Overhead (does not depend directly on the module)

- Allocating memory, creating/flushing tables, etc.

Work done

- Analysis of correlation between features of batches
and CPU usage for standard modules
- Tuple: #pkts, #unique _hashes table
- The rest: #pkts

- #bytes is expected to matter for modules processing
payloads (when collecting full packets)

- Analysis of techniques to predict CPU usage and study
of prediction error

- Prediction methods: Linear prediction, multiple linear
prediction, etc.

« All history, last 1 sec, 10 sec, 1 min, etc.

 The scenario, challenges and objectives of SHENESYS
 Work done and current status

* Preliminary results

- Work plan

* Short term work plan

« Other tasks

« Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

Callback cycles

. 1,3? module: tuple predictor: pkis response: sUmMUsr

carrcoef:
1glL 0345685 : +

sukstCcles

DH | 1 | 1 | 1 |
4000 4500 2000 aa00 OO0 Eo00 Fooan Fo00 gooao
prts/batch

Callback cycles

Histogratm of sumusr’packet (module: tuple)
EI:I 1 1 1

Fal

G0

al

40

a0

20

10

1
22al 2300 2320 2400 2450 2500 ool 2600
sumusr/packet

Callback cycles

w110 sumusr timeseries (module: tuple)

TG
=

__—‘Ll:ll:l:l“-dll'-'.ll'_l'lhl'_-.'lm—'-

DH 1 1 | | 1 1 | | 1 |
a 2000 4000 &OOO S000 10000 12000 14000 16000 T&000

bhatch number

Callback cycles

Average sumustipacket timeseries (module: tuple)
2600

20al

2000

2430

— W o - & N ooy =

=

2400

aderage sumusrihacket

<.dal

<400

EEED + 1 | | 1 1 | | 1 |
a 2000 4000 &OOO S000 10000 12000 14000 16000 T&000

bhatch number

Callback cycles

. 1,3? module: tuple predictor: pkis response: sUmMUsr
e 2
+ 1 ﬁ
+ R
+
1.4 3
+ 5
1.6 °
o ’ + ?
o u)
El + o8
5 S
= 14 + 10
=

1.2

4000 4500 2000 aa00 OO0 Eo00 Fooan Fo00 gooao
prts/batch

Linear regression prediction (10 sec)

. 1,3? module: tuple predictor: pkis response: sUmMUsr

1.6} actual
predicted

1.7

1.6

1.2

LY

1.4

ey

1.3

1.2

1.1

1 [1 1 1 1 1 1 1 1]
0 2000 4000 BOoO0O SO000 110000 12000 14000 16000 18000
bhatch number

Linear regression prediction (10 sec)

Residuals (module: tuple pred: pkts res: SUmusr)
I:II:IE 1 1 1 1

0.06 .
0.04

0.0z .

ralative arar

1 1 1 1 1 1 1 :I: 1 +
0 2000 4000 BOoO0O SO000 110000 12000 14000 16000 18000
bhatch number

Linear regression prediction (10 sec)

module: tuple predictor: pkis response: sUmMUsr

093 F

0.9t l

0.55

,\

0 2000 4000 BOoO0O SO000 110000 12000 14000 16000 18000
bhatch number

cortalation coaficiant

073}

0.7

Multiple linear regression prediction
(10 sec)

w110 FAultiple linear regression, module: tuple

actual
predicted

1.6

1.2

1.4

TS

1.3F

1.2 F

11F

0 2000 4000 BOoO0O SO000 110000 12000 14000 16000 18000
bhatch number

Multiple linear regression prediction
(10 sec)

Rultiple regression (residuals), module: tuple
I:|1 1 1 1

0.0a

0.06

0.04

ralative arar

0.02% + 4 Lt g it .

-0.04

0 2000 4000 BOoO0O SO000 110000 12000 14000 16000 18000
bhatch number

Multiple linear regression prediction
(10 sec)

RAultiple regression (carrelation), module: tuple

0.93

0.93a

0.97

0.96 |

corkalation coaficiant

0.93

0.94

095k ! . L ! ! ! L ! i
O 2000 4000 OO0 S000 710000 712000 74000 16000 13000

bhatch number

System vs. userland cycles

sumtsc
SUMUSKH

SUMSYS

A g e

05 Ity ey

T TPO0 | NP SO T PUTT DU YT PRS0 L TP TR Y AR N

0 2000 4000 BOoO0O SO000 110000 12000 14000 16000 18000
bhatch number

Measurement overhead/error

. 1,:,‘3 module: tuple predictor: pkis response: prctsc
15 [T T T T T T

14| Corcoer |
| 0954089 . +

1.3

1.2

1.1

myclecoycles

0.9

0.3

D? | 1 | 1 | 1 |
4000 4500 2000 aa00 OO0 Eo00 Fooan Fo00 gooao
prts/batch

Reality

w 10" module: tuple predictor: pkts response: prctsc
7.0 . T T

carrcoef:
0.561465

+

B.0 -

i
cn

meclacoycles

cn

=
dy

35 s & : | | | | | |
4000 4500 =00n ao00 OO0 G500 Fooo Fa00 gooo

pEkts/batch

Can we predict that?

w 10" module: tuple predictor: pkts response: prctsc
7o
" + 1
7 g
+ - + 3
+
5.9 | 4
+ 5
+ +
B
b Tt o4 "~
- . +tT & + 7 -
5 55} T + g5 [
X + 10 "
E— 5 | d_u;'-?
=
4.0 +
el
4 B : +
J.0 ¢ l ! I I I | | !

4000 4500 2000 5500 BO00 B500 FOooo0 Fs00 go0oo
pEkts/batch

Linear regression prediction (10 sec)

w 10" module: tuple predictor: pkts response: prctsc
7 actual —
predicted

6.2 F -

G _
o
T
=3

0 Z000 4000 wOO0 SO000 10000 12000 14000 16000 7185000
hatch number

Linear regression prediction (10 sec)

Residuals (module: tuple pred: pkts res: prctsc)
I:IE I | 1 I I I I I

D4 + =]

0.3 + .

ralafive areor

Y Z000 4000 wOO0 SO000 10000 12000 14000 16000 7185000
hatch number

Linear regression prediction (10 sec)

module: tuple predictor: pkts response: prctsc

0.9 -
0.6 - -
0.7 -
0.6 - -
0.2 F

0.4

cosealation copficiant

0.3

0.2

0.1 —

0 Z000 4000 wOO0 SO000 10000 12000 14000 16000 7185000
hatch number

Multiple linear regression prediction
(10 sec)

w 10" FAultiple linear regression, module: tuple
fls actual ~
predicted
6.0 -
G _

mrctag

0 Z000 4000 wOO0 SO000 10000 12000 14000 16000 7185000
hatch number

Multiple linear regression prediction
(10 sec)

RAultiple regression (residuals), module: tuple

I:IE | 1 | | 1 1 1 I
0.4 - + —
+ +
0.3 F —
T -
1
E 0.2 + + + + 7]
uh] + + + + +
@ TH o+ - - N
= +, + ,++ + H+ + 4
AR b i I A e I g S
1= k
> + 43_|51—+-1F+ 3 4 *I~|—+:'E|_+F$ + F+ o+, 4 A +

0 Z000 4000 wOO0 SO000 10000 12000 14000 16000 7185000
hatch number

Multiple linear regression prediction
(10 sec)

Multiple regression (correlation), module: tuple

0.93 ’w

0.9 —

053 -

0.8 |]

coarvalation cogficiant

073 F -

0.7 F I —

0 Z000 4000 wOO0 SO000 10000 12000 14000 16000 7185000
hatch number

Trace: Linear regression prediction
(10 sec)

. 1III? module: trace predictor: pkts response: proctsc
actual

B3 predicted |

G L -

0.2 | .

o 4 -
S
1=

= 4.0f .

0 2000 4000 w000 S000 10000 12000 14000 16000 18000
batch number

Trace: Linear regression prediction
(10 sec)

Residuals (module: trace pred: pkts res: prctsc)

I:IS I I I 1 1 1 1 T

ralative arvor

-0.3 | | 1]]]] 1 n
0 2000 4000 000 S000 10000 1Z2000 14000 18000 18000
batch number

Trace: Linear regression prediction
(10 sec)

module: trace predictor: pkts response: proctsc
1 1 1 1 1 1 1

0.9 .

0.5 .

0.7 .

0.6 .

0.3 .

0.4 .

covkalatian cogficiant

0.3 .

0.2 .

0.1 .

0 2000 4000 w000 S000 10000 12000 14000 16000 18000
batch number

Effects of context switches

. 1,:,'5 procachell grouped by ct< switches (module: tuple)

1o i i
+ 0
2 1
&
= J
o S F
10} = i # a
O S
— 2 oo . o 4
Gt i i 10
E =
2 o o 9 S
& o + 13
= R 18
5
o
s o x e
o 000 @O O o an =
S
DW

0 2000 4000 GO0OO SO000 10000 12000 14000 16000 18000
bhatch number

Removing samples with context
switches

. 1,35 proccachell timeseries (module: tuple)

2.0 F

2.6

2.4 b

2.2 F

W o0 -l 5on B = O

myecachell

1.8 F

1.6}

14t

'IE 1 1 | | 1 1 | | 1 |
a 2000 4000 &OOO S000 10000 12000 14000 16000 T&000

bhatch number

 The scenario, challenges and objectives of SHENESYS
 Work done and current status

* Preliminary results

 Work plan

* Short term work plan

« Other tasks

« Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

Work plan (deadline: August 2006)

« Implement on-line prediction in CoMo
- Based on multiple linear regression
- Implement a method for feature selection

- Study and improve robustness of on-line prediction
mechanism In presence network anomalies and
attacks

- Detect when there are no enough CPU cycles available
to process a batch before the next batch arrival
- To simplify, we might assume that capture is running alone

» Linear optimization to schedule modules in capture
- Utility of module is given as input

- Simple load shedding: Stop serving batches to certain
modules

Work plan (deadline: August 2006)

- Analysis of more complex modules
- e.g. SNORT, Autograph, etc.

« Do the same for memory

« First analysis of export and other load shedding
mechanisms

- Improve the profiling/logging mechanism
- Queriable through CoMolLive!

- Submit a paper to a conference and write a research
report for project renewal

Short term work plan (deadline:
[March 2006)

* Implement on-line multiple linear regression in CoMo

- Implement a fast feature selection algorithm in CoMo
- Remove irrelevant and/or relevant attributes
- e.g. adaptation of Fast Correlation Based Filter (FCBF)

- Modify capture to generate artificial anomalies and
attacks
- Network scans, DoS, elephant flows, etc.

« Improve resource measurement functionalities

- Independent measurements per logical and physical CPU's
» Check for processor switches during measures

- Support for deactivating cache

« Minor tasks
- Repair SNORT module, etc.

 The scenario, challenges and objectives of SHENESYS
 Work done and current status

* Preliminary results

 Work plan

* Short term work plan

e Other tasks

 Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

Other tasks

* Other tasks more related with the main development
of CoMo

- Master Thesis' students
- Derek Hossack working on Autograph

- Possible topics for new Master Thesis' students
« Anomaly detection improving the anomaly-ewma module

» |dentification of network applications based on heuristic

techniques (port of the method already implemented in
SMARTXAC)

* Suggestions?

- Support and maintenance of CoMo nodes
- CESCA
- Possibly internal testing nodes at UPCnet

Equipment

- Equipment available at CCABA that can be used for
Shenesys (and CoMo Master Thesis' students):

- Intel Xeon 3.0 GHz dual processor (giro.ccaba.upc.edu)
- Intel Pentium IV 3.0 GHz (parellada.ccaba.upc.edu)

- 2 X Endace 4.3 GE cards

- 2 x SysKonnect SK98

- Trimble Acutime 2000 GPS receiver

- TDS module

- Optical splitters

- como-upc CVS: tempranillo.ccaba.upc.edu

 The scenario, challenges and objectives of SHENESYS
 Work done and current status

* Preliminary results

 Work plan

* Short term work plan

e Other tasks

« Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

Profiling CoMo modules

- Goal: profiling CoMo modules' callbacks
- Cycles: user space, system space, total
- Cache (L1, L2, L3): hits and misses

« Using Performance Monitoring Counters (PMCs) of the
Pentium IV

- Subset of its Model Specific Registers (MSRs) (not available
on Pentium lll, etc)

 Relevant documentation:

- |A-32 Intel Architecture Software Developer's Manual
- 1A-32 Intel Architecture Optimization Reference Manual

Performance Monitoring Events

- Counting cycles:

- TSC: timestamp counter
* Increments on each CPU cycle

* 64 bit (vs all other counters: 40 bit). Overflow each >10 years.
» Architectural register, not model-specific

- Non-halted clockticks

* Increments on each non-halted CPU cycle (does not increment
during I/O, etc)

« Hyperthreading: can count per-logical-processor
« Can count only system cycles, user cycles, or both

Performance Monitoring Events

« Cache misses:
- L1:
* no way to count misses provided by the Pentium IV
« count instructions replayed due to L1 miss

- L2, L3: can count cache misses (Only Xeon Processors have
L3)

Access to PMCs

- Write operations:

- Needed to choose what metrics are of interest (done once
per CoMo execution)

- Linux offers an interface to PMCs, so we use it: the
/dev/cpu/*/msr virtual device
- Read operations on PMCs:
- Read msr virtual device VS execute the rdpmc instruction
- Read access using msr virtual device too slow, but rdpmc
forbidden by linux
- We are reading PMCs intensively
- Wrote a linux kernel module that enables userland
execution of the rdpmc (read PMC) instruction (which is not
permitted by default)
- Reading the TSC:

- rdtsc instruction, allowed from user space by default

Configuration of PMCs

- Configuration of PMCs:
- tsc: nothing to do

- others:

« 1) determine event to monitor (cache misses, instructions
replayed, or cycles)

« 2) choose an appropriate event selection control register (ESCR)
» 3) configure the ESCR to select the event to monitor
« 3) choose an appropriate performance counter

* 4) configure its configuration control register (CCCR) to enable
counting

Preventing instruction reordering

« The Pentium IV can reorder instruction execution
- Speculative execution of instructions (branch prediction)
- Memory reordering

« Serializing instructions force the processor to
complete all modifications to flags, registers, etc
before execution of next instruction.

- no instruction after a serializing operation can be executed
before

- no instruction before the serializing op can be executed after
- Serializing operations can impact on CPU performance
- results of speculatively executed instructions are discarded
- The cpuid serializing instruction can be used to
Increase the accuracy of the PMCs:
- we will not measure instructions that do not belong to

callbacks
- cpuid; read pmcs; cpuid; call module callback; cpuid; read
pmcs; cpuid

- we still need to check impact on performance

 The scenario, challenges and objectives of SHENESYS
 Work done and current status

* Preliminary results

 Work plan

* Short term work plan

e Other tasks

« Equipment

» Appendixes

- Josep Sanjuas: Intel performance counters
- Diego Amores: Summary of his internship at Intel Research

Packet filtering in CoMo

« Initial situation

- Packet filters compiled at runtime and loaded as a shared
library.
(undesirable because not portable to some architectures,
e.g. ARM).

- When querying, users have to write packet filters exactly in
the same way they are configured in the system.

 New implementation of the filter parser
- Using a CFG and Flex/Bison.
- Filters are seen as “expression trees”.
- No longer needed to compile filters at runtime (> portability)

- Users only have to write semantically equivalent filters when
querying (more flexibility).

- Looked into more advanced packet filtering methods (PTree,
Tuple Space Search), but discarded them for now.

- Future: probably use a method similar to BPF filtering.

Interarrival module

¢ Qutputs the packet timestamps for each 5-tuple
(protocol, source ip, source port, dest ip, dest port).

« Used in experiments at IRC about inferring access
network load and distinguishing between wired and
wireless traffic, by Valeria Baiamonte (Politecnico di

Torino).

CoMo “Inline”

« Command-line operation support for CoMo
(as in other tools like tcpdump).

- The user can specify a module, filter, format and time
interval as command-line options and directly get the
output, without the need of HTTP queries.

Porting CoMo to ARM

- Objective: make CoMo work in machines with an ARM
architecture (like the Crossbow Stargate for wireless
monitoring).

- Main issue: data structures and memory accesses
must be
4-byte aligned.

 Future work: Tamper resistant wireless network
monitoring, by K.P.McGrath (University of Limerick).

“Source” modules

- Added “source” option to queries.

« When serving a query, it is now possible to use the
data stored by another module as input, through the
replay() callback of that module.

- Makes it possible to launch queries with a time interval
in the past for modules that do not store enough data
themselves (e.qg. topdest or topports).

